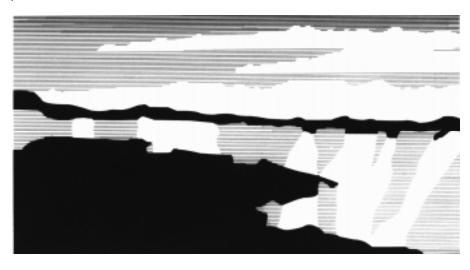
Title: | Environmental Management Policy Analysis - using - Complex System Simulation

Author(s):


Edward M. Van Eeckhout William R. Oakes, Jr. R. Wayne Hardie

Submitted to:

Internal LANL presentation to Bruce Erdal and Jerry Boak (Environmental Management program office)

February 3, 1998

Approved for public release; distribution is unlimited.

Los Alamos

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; therefore, the Laboratory as an institution does not endorse the viewpoint of a publication or quarantee its technical correctness.

ENVIRONMENTAL MANAGEMENT POLICY ANALYSIS

- USING -

COMPLEX SYSTEM SIMULATION

3 Feb 1998

Rob Oakes Ed Van Eeckhout Wayne Hardie

Environmental Management Policy Analysis Using Complex System Simulation

BACKGROUND

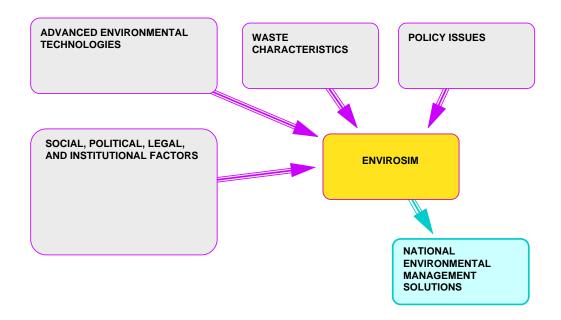
- TSA.. Envir C/B, flow modeling, safety risk assessments
- Envir Mgmt needs complete system
- exs..TRANSIMS, FDE, JWARS

FV 97

- model proposed Los Alamos pit production, including waste
- model storage and transport of TRU waste from Los Alamos to WIPP

OBJECTIVE

 Using simulation science techniques for analyzing complex systems, assist DOE/EM policy makers by developing and applying an environmental technology evaluation tool


FY 98

- expand transportion model to include DOE complex
- add costing to models
- investigate generative analysis

We view this work as being very supportive of the potential TRU waste focus area, as well as the ModSim effort currently being pursued by Los Alamos.

THE ENVIROSIM APPROACH

FEATURES

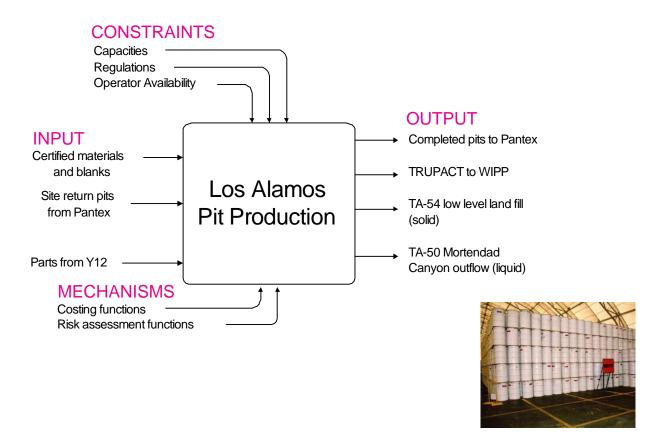
- Complex System
 Collection of interacting components (actors or agents)
- Emergent Behavior
 Emergent macro properties result from interactions among the components and their environment
- Reductionist Approach
 Break system into smaller and smaller parts and analyze properties of parts

Holistic Approach
Analyze global properties
by incorporating interactions
of various components

Comparative Analysis

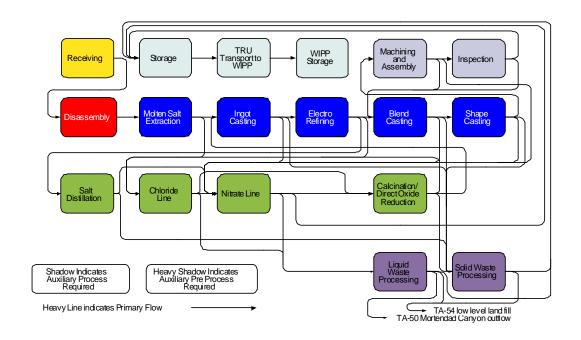
 Introduce changes to baseline simulation and investigate
 impact of changes to system

Generative Analysis
Search the systems phase
space to find configuration
that best meets objectives

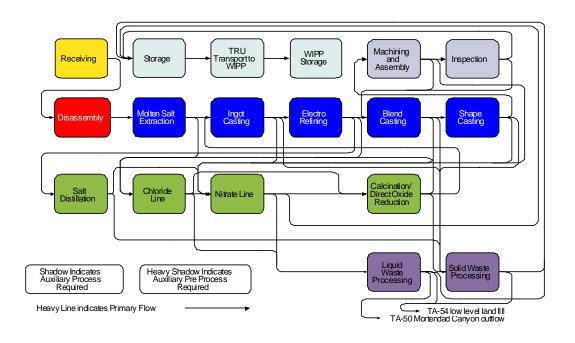


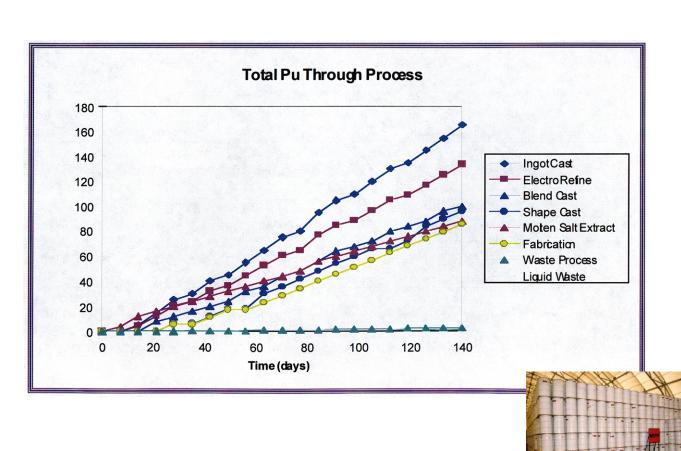
DOE'S INTEGRATED PRIORITY LIST

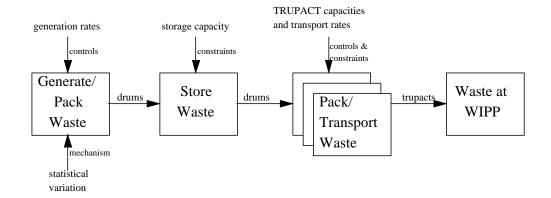
- Eliminate the most urgent risks
- Maintain compliance
- Reduce mortgage and support costs
- Protect worker health and safety
- Reduce the generation of waste
- Create a collaborative relationship
- Focus science and technology development
- Integrate waste treatment and disposal across sites


*U.S. DOE 2006 Plan, October 20, 1997, Update Version 5.0

Model of Proposed Los Alamos Pit Production


Model of Proposed Los Alamos Pit Production





Some Results of Proposed Los Alamos Pit Production Simulation

LANL WIPP TRU Waste Transport Model

Dates of Simulation - Ten Years

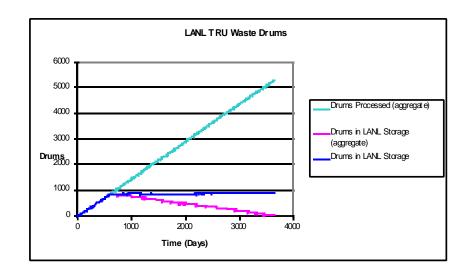
begin: June, 1996complete: May, 2006

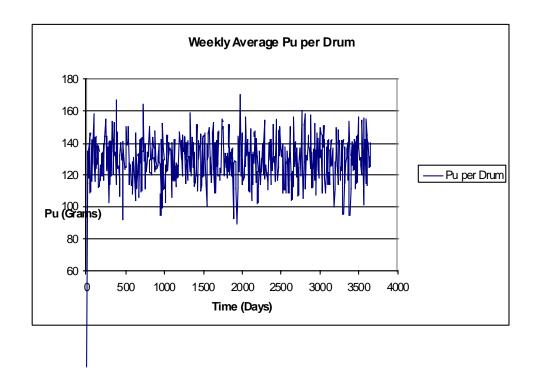
begin WIPP shipment: January 1998

Waste Packing (into drums)

- between 9 grams and 200 grams Pu per drum
- 180 grams Pu per drum most likely

LANL TRU Waste Generation and Storage Information


- between 6 drums and 15 drums per week
- 10 drums per week most likely
- 1000 drums maximum stored at LANL


TRUPACT and Transportation Information

- 3 TRUPACTS available for LANL to WIPP transport
- 325 grams Pu max per TRUPACT
- 14 drums max per TRUPACT
- 4 day cycle, load, transport, unload, return

Some Results of the Waste Transport Model

NEXT STEPS

- expand transportion model to include DOE complex
- add costing to models
- investigate generative analysis

the DOE Complex

TRU Waste Storage Locations and Volumes (in cubic meters)

		CH-TRI	CH-TRU Waste		RH-TRU Waste	
Site	Location	Stored*	Projected	Stored*	Projected	
Argonne National Laboratory-East (ANL-E)	Argonne, IL	83	12	0	0	
Hanford Reservation (Hanford)	Richland, WA	16,407	9,251	200	2,420	
Idaho National Engineering Laboratory (INEL)	Idaho Falls, ID	65,102	81	86	53	
Lawrence Livermore National Laboratory (LLNL)	Livermore, CA	249	905	0	0	
Los Alamos National Laboratory (LANL)	Los Alamos, NM	7,770	9,259	94	136	
Mound Plant (Mound)	Miamisburg, OH	239	12	0	0	
Nevada Test Site (NTS)	Nevada	623	12	0	0	
Oak Ridge National Laboratory (ORNL)	Oak Ridge, TN	1,303	256	962	193	
Rocky Flats Environmental Technology Site (RFETS)	Golden, CO	1,043	14,741	0.	0	
Savannah River Site (SRS)	Aiken, SC	9,165	3,773	0	0	
Small Quantity Sites						
Ames Laboratory (Ames)	Ames, IA	0	<1	0	0	
ARCO Medical Products Company (ARCO)	West Chester, PA	<1	0	0	0	
Babcock & Wilcox - NES (B&W Lynchburg)	Lynchburg, VA	18	. 0	0	0	
Battelle Columbus Laboratories (Battelle)	Columbus, OH	0	0	581	0	
Bettis Atomic Power Laboratory (BAPL)	West Mifflin, PA	0	. 123	0	2	
Energy Technology Engineering Center (ETEC)	Santa Susana, CA	2	. 0	6	1	
General Electric-Vallecitos Nuclear Center (GE-VNC)	Pleasanton, CA	5	4	5	8	
Knolls Atomic Power Laboratory (KAPL)	Niskayuna, NY	0	0	6	<1	
Lawrence Berkeley Laboratory (LBL)	Berkeley, CA	<1	1	0	0	
Paducah Gaseous Diffusion Plant (PGDP)	Paducah, KY	2	0	0	0	
Pantex Plant (Pantex)	Amarillo, TX	<1	0	0	0	
Sandia National Laboratories (SNL)	Albuquerque, NM	7	6	1	2	
Teledyne Brown Engineering (Teledyne Brown)	Westwood, NJ	<1	0	. 0	0	
U.S. Army Material Command (USAMC)	Rock Island, IL	3	0	0	0	
University of Missouri Research Reactor (MURR)	Columbia, MO	<1	<1	0	0	
Total Waste Volumes		102,025	38,437	1,941	2,816	

^{*} volumes prior to treatment and repackaging

Information from the National TRU Waste Management Plan, DOE/NTP-96-1204, Revision 0, September 30, 1996

WIPP user priority: Idaho, LANL, Rocky

COSTS

- ave WIPP cost of disposal = \$15-17k/drum
- ave cost pkging/insp at sites = \$6-9k/drum
- variable cost may be \$10k/drum

THE BOTTOM LINE

want to support and collaborate with TRU waste focus area

costs quantities schedule

 want to utilize a form of envirosim for case study under ModSim

